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Abstract: New generation electricity network called Smart Grid is a vision for a cleaner, more efficient 

and cheaper electricity generation, transmission and distribution system. One of the major challenges of 

Smart Grid is to incorporate renewable energy resources: the uncertainty of these sources cannot be com-

pensated by the control of fossil generators because of their large time constants. One solution to this 

problem is influencing the demand side by controlling the consumption and incorporating energy storages 

like batteries of electric or hybrid vehicles. Balance between demand and supply is crucial since oversup-

ply means waste of energy, while undersupply causes performance degradation of the grid parameters 

(e.g. phase, voltage level, etc.). In this paper new Demand Side Management techniques will be surveyed, 

which are algorithmic solutions to the new challenges and are successful candidates to increase the effi-

ciency of the Smart Grid. The new strategies can be grouped as direct control of smart appliances, price-

based methods and scheduling of charging electric vehicles.  
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1   Introduction 
Power needs of our modern society are growing 

day-by-day. For example hybrid and electric ve-

hicles make extra load to the existing electric 

power network. The traditional approach to solve 

this problem was expanding supply by installing 

new capacity. Recently the cost of new capacity 

became higher, and environmental issues came to 

the fore [1]. Going to a greener World, renewable 

power resources are playing more and more im-

portant role, however incorporating them into the 

grid increases the uncertainty of the generated 

power because of their hard-to predict nature. 

Traditionally there are uncertainties in the load 

side, which rise severe problems to the energy 

supply system: undersupply and oversupply. Both 

of them should be avoided to maintain operational 

stability and financial efficiency. Electricity stor-

age technologies could solve the balance problem 

of the network (supply and load should be equal 

for every moment), but they are still not in a ma-

ture state. The rapid control of the supply side is 

impossible due to the physical parameters of the 

traditional power plants. As a consequence the 

only possible solution could be the control of the 

consumption side. In Smart Grid and energy man-

agement literature the influence of consumers’ 

behavior is called Demand Side Management 

(DSM), Demand Response (DR), and load man-

agement. DSM is a very broad set of actions such 

as applying  

- intelligent appliances (which can be con-

trolled by the network operator),  

- complicated electricity pricing strategies 

to motivate consumers to change their 

load profiles,  

- scheduling of large and shiftable consum-

ers (e.g. charging of batteries of electric 

vehicles).  

Demand Response is a subset of DSM programs 

which relies on price signals as main motivations 

for changing consumer electricity usages [1]. The 

common objective of the above mentioned meth-

ods is increasing the reliability, the stability and 

the economic efficiency of the of electric power 

network.  

The basis of the new DSM techniques is smart 

metering and two-way communication channel 

between smart meters and the network operator 

agent, which are fundamental components of the 
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future electric power network, the smart grid. In 

this paper the most promising DSM techniques 

will be surveyed.  

 

2 Control of Smart Appliances 
In Smart Grid, Smart Appliances (controlled and 

supervised by an agent) can provide real-time 

consumption information. Balancing demand with 

supply is feasible by controlling flexible devices, 

whereas devices are controlled by an agent with 

supervisor commands (e.g. on/off policy) initiated 

by a system, running sophisticated algorithms. 

The investigation on control strategies can focus 

on the residential, commercial and industrial sec-

tors as well. Basic component of the Smart Grid is 

the Smart Meter. A Smart Meter has the ability to 

disconnect and reconnect remotely and control the 

user Smart Appliances to manage loads and de-

mands within a HAN – Home Area Network. 

HANs of Smart Meters collect most critical data: 

total energy consumption and production, indi-

vidual consumption from home appliances, indoor 

environmental parameters (related to user com-

fort), other user oriented data like thresholds and 

policies for efficient equipment operation.  
 

2.1 Goals of Direct Control  
Expected results by implementing an algorithm 

for controlling Smart Appliances are overall cost 

reduction, load balancing and energy savings. 

Beside these most important goals we must also 

consider fairness and comfort. Fairness means 

DSM should be financially good choice for both 

the providers and the customers. Comfort is an 

individual factor, which has different metrics. For 

instance thermal comfort is highly investigated in 

the DSM literature [2]. 
 

2.2 Categories of Power Loads    
To be able to define adequate and feasible control 

strategies we should first categorize our applianc-

es and determine the main parameters of their 

operation. Several papers in the literature focus on 

controlling low power consumption appliances. 

Others papers emphasize the control of high pow-

er consumption devices, which have more signifi-

cant impact on overall consumption of a house-

hold or building. Our proposed categorization of 

devices is based on the available literature [5, 6] 

and it is described in the following section (main 

parameters are collected in Table.1).  

ALWAYS ON - Appliances that can be switched 

on any time (e.g. lighting, cooking stove, micro-

wave oven, computing and network devices). 

They provide information on energy usage (helps 

to schedule other devices) instead of offering the 

possibility of controlling them.  

BATTERY – Defines the total amount of time, 

the device should be turned on and starting time 

has to be given, so that a certain state of charged 

level can be reached (e.g. laptops and Electric 

Vehicles that need recharging). These devices 

typically have constant load during operation. 

TIMED ON - Devices that are scheduled to be 

ready with a certain job on time. They have a 

fixed duration and are required to start and finish 

at given moments (printer, clothes dryer, dish-

washer, washing machine.). 

CYCLIC - These devices are always in running 

state during a long period of time and must be 

operated cyclically (HVAC: Heat Ventilation Air 

Conditioning, refrigerator, water heater). 

  

2.3 Control Techniques 
There are different opportunities to define control 

strategies. One of the most simple and feasible is 

the on/off policy [3-6], where maximum allowa-

ble load and duration signals come from the Smart 

Grid. To control flexible devices, decision is 

made locally according to the incoming load and 

duration data, the measured consumption values 

and the policies associated with appliances. Com-

fort is related to parameters like physical values, 

threshold values, the minimum time needed to 

        

 start time duration of 

operation 

stop time load usage pattern control intermit 

ALWAYS 

ON 

stochastic stochastic stochastic not constant can be learned no no 

BATTERY latest is 

stopTime-

duration 

depends on 

load 

can be 

predefined 

constant can be learned 

or predefined 

yes any time 

TIMED 

ON 

latest is 

stopTime-

duration 

fixed mini-

mum 

can be 

predefined 

pattern can be learned 

or predefined 

yes yes (if time left to 

finish > duration) 

CYCLIC  >minONTime  semi constant  yes yes (if ONTime > 

minONTime) 
 

Table 1. Characterization of consumer classes 
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reduce discomfort metric, and the time needed the 

discomfort metric to reach an upper limit. Based 

on the literature [4] the total consumption (power 

load) of a building with controllable appliances 

can be modeled with the followings (NApp is the 

number of appliances):  
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A more sophisticated model could provide the 

ability to control appliances in a continuous poli-

cy. Dynamic scheduling of the operation of appli-

ances can be performed with different approaches. 

The objective function of a scheduling algorithm 

can be the minimum energy consumption or the 

price paid for all consumed electricity [6]. In the 

work of [5] the load control is solved with an 

online scheduling technique (adopted from a real-

time computing systems scheduling algorithm). 

To solve the optimization problem as a different 

approach a priority queue with the Breadth-Fist 

Search is implemented in [6]. In most of the pa-

pers the control of real appliances in realistic en-

vironment is relatively rare [4], most of the 

sources deal with simulations [3-5].  

 

3   Price-based DSM 
Price-based demand response programs aim to 

motivate the consumers to change their consump-

tion responding the actual purchase price of elec-

tricity. Rescheduling the consumption to low-

price-hours results in saving cost for the end-

users. At the same time service providers can 

increase their profit and satisfy higher quality of 

service, and authorities can satisfy lower level of 

environmental load. The main goals of the service 

provider side are (i) load shaping (peak shaving – 

i.e. reducing the peak load power, load shifting 

and valley filling), and (ii) balancing the supply 

and consumption in every moment in order to 

satisfy the stability of the grid (frequency, volt-

age, etc.).  

Price-based demand side management programs 

(instead of conventional flat-pricing) can be cate-

gorized as follows: 

 Time-of-use (TOU) tariffs: there are prede-

fined prices for different periods of the day 

(typically peak hours and non-peak hours); 

the prices are related to the estimated average 

cost of generating and distributing energy in 

the given period [9,11]; 

 Real Time Pricing (RTP): for RTP the price 

can be changed in short periods of time 

(hourly or 15 minutes resolution); price is 

advertised in an hour-ahead basis; the price 

reflects the instantaneous cost of generating 

and distributing of power. [11-14] 

 Critical peak pricing (CPP) is a mixture of 

TOU and RTP: The basic program is TOU 

which is modified in the case of critical situa-

tions like critical peak loads, or stability 

problems of the grid caused by outages. The 

main drawback of CPP is coming from its 

hard-to-implement nature. [11] 

Another important and intensively discussed issue 

regarding demand response programs is mandato-

ry or voluntary participation. Nowadays all the 

running programs are mostly voluntary [11]. The 

major benefit of voluntary participation is that 

only collaborating consumers want to take part in 

the program, but unfortunately economically and 

environmentally aware end-users are in minority, 

that is why mandatory programs are waited to be 

more efficient.  

 

3.1. Time of Use (TOU) programs 
TOU based programs are relatively easy to im-

plement and customers can easily understand the 

benefit of participation. However it is shown, that 

the efficiency highly depends on the behavior of 

the users and the load shaping effects of TOU are 

poor. For example in a pilot project in Italy (with 

ca. 1000 end-users and one-year assessment of 

load data [9]), the energy cost of the consumers 

decreased 2%, but the energy usage increased 

15%. The morning peak has been decreased and 

shifted as well, but the afternoon peak neither 

could be shifted nor could be shaved [9].  

 

3.2. Real Time Pricing 

Real Time (or adaptive) Pricing (RTP) is shown 

to be a more powerful tool than TOU.  RTP is 

capable to influence subscribers to consume wise-

ly, and at the same time allows retailers to maxim-

ize their profit with possible lowest risk [12]. 

Residential customers can reduce their electrical 

energy cost by scheduling their power need to 

hours of lower prices. This behavior results in 

peak load clipping and valley filling which is the 

basic interest of retailers and power generators as 

well, because wholesale prices in the case of large 

peak loads are very expensive due to inefficiency 

of marginal oil-fired generators. This fact is illus-

trated by Fig.1 [10]: one can see the very steep 

slope of the offered price vs. generated power  

(2) 

(3) 

(1) 
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function in a given hour in Alberta, USA. Fur-

thermore, as a result of the flat load curves, the 

usage of the marginal generators can be reduced, 

and the role of environmentally friendly renewa-

ble resources can be increased.  

 

 
Fig.1. Alberta Supply curve [10] 

 

From an economical point of view electricity 

markets have a special feature:  supply and de-

mand have to be balanced at every moment since 

the very limited facilities for storing electrical 

energy. As a result, well elaborated economic 

indicators, such as utility, welfare, discomfort and 

price elasticity cannot be used in the original 

form, but their time varying nature has to be taken 

into consideration [7,8].  The most important find-

ings are 

 voluntary participation in RTP programs has 

insufficient efficiency, mandatory participa-

tion is needed; 

 RTP needs smart metering (not only to deliv-

er detailed and on-line consumption data to 

the service provider, but for giving infor-

mation for the subscribers to motivate them); 

 Regulatory system is needed regarding li-

censing, controlling and monitoring user’s 

activities; 

 The whole risk of spot prices cannot be 

pushed to subscribers: cap price has to be in-

troduced in real systems. 

Recently some papers [10-14] aim to contribute to 

optimal algorithms to calculate real time prices. 

The suggested methods often substantially differ 

from each other, because of the differences in the 

used models and objective functions.  

Real time prices are considered both in a day-

ahead fashion (e.g. in [11-13]), or in an hour-

ahead fashion (e.g. in [14,19]). In the case of the 

day-ahead approach, for every hour of the next 

day retail prices are calculated based on the day-

ahead wholesale prices and using forecast of the 

demand. Since demand depends on the price, an 

iterative process is applied to reach an optimal 

equilibrium (see [11-13]).  In the case of the hour-

ahead real time pricing algorithms, the price of 

the next hour will be advertised directly before the 

upcoming hour. In this case the goal is to allocate 

the supplied energy among competitive consum-

ers. The basic idea is borrowed from the method 

of congestion pricing used originally for internet 

traffic control [14, 19]. User preference is mod-

eled by willingness to pay parameter. In other 

words the philosophy is that users who are willing 

to pay more should get more. The initial step of 

the algorithm is advertising an initial price calcu-

lated by demand forecast. The consumers react to 

the initial price by their capacity needs that max-

imize their utility function. The retailer sums the 

capacity needs and updates the price offer, result-

ing in an iterative process. It is shown in [14] that 

the algorithm is convergent, furthermore it is 

shown that local optima leads to global optimum 

in the sense of user’s mean utility.  

The number of players of the electricity markets is 

huge; therefore distributed optimization methods 

play a crucial role. The hour-ahead algorithms are 

fully distributed, since users have to optimize 

locally their capacity needs regarding the actual 

price offer and their willingness to pay parameter.  

paper Objective function Constraints Optimization 

method 

Type of 

RTP 

distribut-

ed 

[11] profit of the retailer maximum limit of load reduction; 

price cap; 

non-linear 

programming 

day-

ahead 

no 

[12] profit of the retailer as a function of a 

composite demand response function 

of prices (different type of customers) 

price cap Q-learning day-

ahead 

no 

[13] profit of the retailer as a function of 

the demand response function of 

prices 

consumer’s benefit, max. and min. 

demand; min. daily consumption, 

price cap, network constraints 

non-linear 

programming 

day-

ahead 

no 

[14] utility minus cost -  differentia 

equation 

hour-

ahead 

yes 

[19] aggregate utility of all subscribers and 

minimizing the cost of the retailer 

limit of total energy consumption convex pro-

gramming  

hour-

ahead 

yes 

 

Table 2. Comparison of optimal RTP algorithms 
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The retailer sums the capacity need and updates 

the price offer. Day-ahead RTP algorithms gener-

ally needs a central computer that globally opti-

mize the given cost function. The objective func-

tion of the optimization in the case of the day-

ahead methods is mainly related to the profit of 

the retailer. In the case of hour-ahead algorithms 

the goal is the maximization of the utility of the 

consumers. In Table 2. the optimal RTP algo-

rithms founded in the literature [11-14,19] are 

characterized by the applied objective function, 

optimization technique, and some other features.  

 

4   Scheduling-based DSM 
Main goals of scheduling-based DSM could be 

maximizing the economic benefit, maximizing the 

use of renewable energy resources, or reducing 

the peak load demand. Another challenge in 

scheduling-based DSM is to fulfill consumer de-

mands while avoiding infrastructure overloads. 

Scheduling-based DSM is able to yield the de-

sired load curve according to the preferred objec-

tive function. The desired objective of the DSM 

strategy can be achieved bringing the final load 

curve as close to the objective load curve as pos-

sible when scheduling-based DSM alters custom-

ers’ electricity consumption. 

Common ways to shape demand profile can be 

shifting, scheduling, or reducing customers’ de-

mand. The goal is to achieve a smoothed demand 

profile instead of the initial profile with sharp 

peaks; or reduce peak demand of the total energy 

demand; or reduce the peak-to-average ratio [5-7]. 

A new challenge can be to reduce novel arising 

costs of imbalance as unpredictable changes in 

production and consumption yield to a cost for 

repairing the balance. Fixed settlement periods are 

used in organizing load schedule varying per 

country in length between 15 and 60 minutes. 

Figure 2 shows a typical daily load profile of a 

residential consumer before and after scheduling-

based DSM.  

Some of typical appliances in industrial, commer-

cial or residential consumers’ load profile are 

shiftable consumption devices (e.g. washing ma-

chine, air conditioner) giving an opportunity to 

reach the effective load shaping. Unfortunately 

this is still not sufficient to balance the unreliable 

output of RES power generators (e.g. solar panels 

and wind turbines). Meanwhile new challenges 

and new opportunities for scheduling-based DSM 

are emerging with fully electric vehicles and plug-

in hybrid electric vehicles launched to market in a 

rapidly growing number [14-18]. In most cases 

electric vehicles need to be charged after their 

batteries deplete. The increasing penetration lev-

els of uncoordinated electric vehicle charging will 

significantly reduce power system performance 

and efficiency, and even result in overloading the 

grid system. One possible solution for mitigation 

of the impact of this effect is to optimize their 

charging profile. It means that we need to keep 

the peak power demand as small as possible, tak-

ing into account the extra power consumption of 

vehicle charging. This can be achieved by coordi-

nation of their charging. A more highlighted im-

pact of electric vehicles is that they provide a new 

way to store and supply electric power. It is easy 

to recognize that the key question is to determine 

the appropriate daily charge and discharge time 

periods of these vehicles, taking into account the 

requirements of both vehicle owners and their 

utility. An electric vehicle can only deliver power 

to the grid or can charge its batteries when it is 

parked and connected to grid which property re-

sults in a higher uncertainty of the power supplied 

or consumed by any electric vehicle. This prob-

lem leads to a need for using appropriate analyti-

cal tools, enabling an investigation of a large-

scale electric vehicle stochastic behavior.  
 

 
Fig.2: Typical daily load profiles 

 

Easy to understand why a hot topic in smart grid 

literature is the role and impact of electric vehi-

cles on the power grid. Several distributed frame-

works are proposed in the literature to coordinate 

electric vehicle charging using stochastic pro-

gramming [14], quadratic optimization [16, 17], 

particle swarm optimization [15], dynamic pro-

gramming, and other resource allocation methods 

based on multi-agent system [18]. To increase the 

fraction of electricity supplied from today’s wide-

spread utilized RES having a fluctuating output, 

we must learn to maintain a balance between de-

mand and supply.  

The final goal of investigations in the field of 

scheduling-based DSM is the development of 

methods and techniques to ensure this balance.  

It is expected that the DSM solutions in practice 

will base on utilizing storage capacity of electric 

vehicles to support this balance. As an addition 

this solutions will greatly support a reduce in 

overall CO2 emissions. 
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5   Conclusion 
In this paper, Demand Side Management and 

Demand Response Techniques have been sur-

veyed, which allow system operators to control 

electricity network in a more stable and financial-

ly feasible way. Different approaches such as 

Control of smart appliances, pricing strategies and 

load scheduling have been presented, which are 

able to enhance grid efficiency and hence leading 

to a Smart Grid. 
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